Extensions 1→N→G→Q→1 with N=C22×S3 and Q=Dic3

Direct product G=N×Q with N=C22×S3 and Q=Dic3
dρLabelID
C22×S3×Dic396C2^2xS3xDic3288,969

Semidirect products G=N:Q with N=C22×S3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊Dic3 = S3×A4⋊C4φ: Dic3/C2S3 ⊆ Out C22×S3366(C2^2xS3):Dic3288,856
(C22×S3)⋊2Dic3 = C62.31D4φ: Dic3/C3C4 ⊆ Out C22×S3244(C2^2xS3):2Dic3288,228
(C22×S3)⋊3Dic3 = C2×D6⋊Dic3φ: Dic3/C6C2 ⊆ Out C22×S396(C2^2xS3):3Dic3288,608
(C22×S3)⋊4Dic3 = S3×C6.D4φ: Dic3/C6C2 ⊆ Out C22×S348(C2^2xS3):4Dic3288,616

Non-split extensions G=N.Q with N=C22×S3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C22×S3).Dic3 = C12.D12φ: Dic3/C3C4 ⊆ Out C22×S3484(C2^2xS3).Dic3288,206
(C22×S3).2Dic3 = C12.77D12φ: Dic3/C6C2 ⊆ Out C22×S396(C2^2xS3).2Dic3288,204
(C22×S3).3Dic3 = S3×C4.Dic3φ: Dic3/C6C2 ⊆ Out C22×S3484(C2^2xS3).3Dic3288,461
(C22×S3).4Dic3 = C2×D6.Dic3φ: Dic3/C6C2 ⊆ Out C22×S396(C2^2xS3).4Dic3288,467
(C22×S3).5Dic3 = C2×S3×C3⋊C8φ: trivial image96(C2^2xS3).5Dic3288,460

׿
×
𝔽